
CS4540/8803: Algorithmic Theory of Intelligence

Project Guidelines.

Instructions. Form teams of 1-3 students. Each team can choose one of the following options:

• Read a paper and provide an insightful explanation/simpler proof/generalization.

• Prove a conjecture. (This can be a small extension of the results of a paper; for example,
arguing that the results hold in a more general setting, or arguing that a stronger result holds
in a more specific setting.)

• Formulate a precise conjecture supported by experimental or theoretical evidence.

Possible topics. Below is a list of suggested papers; you may pick the topic from one of these, or
suggest your own. Only one group can work on each topic, so you should reach out to reserve the
topic if you have one you are particularly interested in. Additionally, please discuss your project
idea with the TAs during office hours.

For some of the papers listed, we have included a summary and some sample questions to help
you get started. If you choose these topics, you are not limited to these questions (and hopefully
new ideas will come up as you read and understand the papers!)

1 Algorithms

1. Learning-augmented algorithms [MV22]. Using predictions from machine learning to the
traditional algorithms can sometimes circumvent the worst-case analysis. Can you think of
the learning augmented algorithms/ data structures [LLW22] that are provable to be beneficial
when the predictions are good?

2. Algorithms for online convex minimization [HAK07]. In the online convex optimization prob-
lem, the algorithm is given a sequence of (possibly unrelated) convex cost functions, with
the goal of coming up with a strategy that minimizes the total cost. What do these classic
algorithms have in common, and how do they exploit the convexity of the cost functions?

3. Optimization under delayed feedback [VDL22]. In classical Bayesian optimization, the algo-
rithm makes a guess and is immediately given information on how well the guess performed.
This paper studies the case where the feedback comes after a random amount of time.

2 Neuroscience

1. k-cap as a model of neuron dynamics [RV23]. In the assembly model, the k neurons with the
highest synaptic inputs fire at each time step. How does this function behave on different
types of connectomes?

2. Biological random projection. The structure of the fly’s olfactory system is well-known by
neuroscientists. This paper [DSN17] gives evidence that their system implements a nearest-
neighbor search algorithm.
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3. Random graph models with fixed subgraph densities. Many graphs encountered in applica-
tions are sparse, but have dense communities. This paper [PV22] introduces a random graph
model which results in many dense subgraphs.

4. Graph sparsification [SS08]. The goal of graph sparsification is to approximate a dense graph
G with a sparse graph H, speeding up processing time while preserving key properties.

3 Machine Learning Theory

1. Hardness of agnostic learning. This paper [SSSS11] uses the idea of boosting to give a hardness
result for learning kernel-based halfspaces.

2. Learning intersections of halfspaces [Vem10]. Faster algorithms or more general distributions?

3. Learning DNF [KS01].

4 Representation Learning

1. Clustering. Efficient clustering algorithms for high dimensional data. Some previous refer-
ences: [KVV04, CEM+15].

2. Active learning is allowed to draw random unlabeled examples and ask for the labels of some
of them. This paper [BBL06] analyzed the active learning algorithm.

3. Lifelong learning is the setting to learn a sequence of tasks in a stream while we maintain a
set of features that help to learn future tasks more efficiently. The paper [CLV22] provides an
efficient lifelong learning algorithm for learning halfspaces for logconcave distributions. Can
you generalize to other data distribution? Can you generalize to more general function class,
such as polynomials?

4. Meta-learning is to use the data from existing tasks for learning algorithms or representations
that enable better performance on unseen tasks. [BKT19] gives the result for gradient-based
meta-learning though online convex optimization.

5. Reconstruction-based self-supervised learning is the method that learns the representation by
solving some reconstruction style pretext tasks, such as predict the masked word. [LLSZ21]
gives some results based on conditional independence assumption.

6. Contrastive learning. This is a self-supervised learning method, that learns the representation
by pushing similar examples closer while keeping different examples far apart. [HWGM21]
provides a way to analyze contrastive learning by augmentation graph on data.

7. Data augmentation. This is a common technique for machine learning. [SMB22] provides
some PAC learning results under transformation invariance.

8. Semi-supervised learning. Since labels are expensive, algorithms that use less labels are
proposed. [FKKT21] proposes efficient algorithms for learning from coarse labels.
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9. Mixup is a way of data augmentation, which uses linear interpolation to get new data. The
paper [ZCLG23] uses feature-noise data model and shows that mixup training can effectively
learn rare features.

10. Machine unlearning [NRSM21] is the process to let a machine learning model forget about
some of its training data points without retraining from sketch. Can you think of efficient
algorithms for machine unlearning?

5 Deep Learning Theory

1. When is (S)GD provably efficient for loss minimization? The paper [MBB18] shows the fast
convergence of SGD for over-parameterized learning under some assumptions.

2. Implicit bias. When training classifiers with (S)GD, the predictor converges to the direction of
max-margin solution, which is referred to as implicit bias. [SHN+18] has proved implicit bias
for separable data. Can you prove implicit bias in other settings or show a better convergence
rate?

3. Benign overfitting. Seek explanations for generalization despite overfitting. [BLLT20] con-
siders linear regression while [KCCG23] provides risk bounds for learning two-layer ReLU
convolutional neural networks.

4. Generalization for interpolating algorithms [BHM18]. In practice learning methods that per-
fectly fit the training data perform well. When does this heuristic provably work?

5. Double descent [BHMM19, AP20] refers to the phenomenon that when we increase model
size, performance first gets worse and then gets better. Can you provide some analysis to
explain this phenomenon?

6. Convolution networks. Are convolutional nets the optimal solution for some optimization
problem solved by evolution? [LZA20]

7. Self-attention. Transformers can learn functions in-context from examples, without updat-
ing their internal weights. Could the self-attention layer be performing a type of gradient
descent[VONR+23]?

8. Performative Prediction. In some applications, making predictions in online learning can
influence the data distribution. This paper uses game theory to find a stable point in this
setting[PZMDH20].

9. Neural Tangent Kernel [JGH18] is a kernel that can be used in the analysis of deep learning.
What are its strengths and limitations?

References

[AP20] Ben Adlam and Jeffrey Pennington. Understanding double descent requires a fine-
grained bias-variance decomposition. Advances in neural information processing sys-
tems, 33:11022–11032, 2020.

3



[BBL06] Maria-Florina Balcan, Alina Beygelzimer, and John Langford. Agnostic active learn-
ing. In Proceedings of the 23rd international conference on Machine learning, pages
65–72, 2006.

[BHM18] Mikhail Belkin, Daniel J Hsu, and Partha Mitra. Overfitting or perfect fitting? risk
bounds for classification and regression rules that interpolate. Advances in neural
information processing systems, 31, 2018.

[BHMM19] Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern
machine-learning practice and the classical bias–variance trade-off. Proceedings of the
National Academy of Sciences, 116(32):15849–15854, 2019.

[BKT19] Maria-Florina Balcan, Mikhail Khodak, and Ameet Talwalkar. Provable guarantees
for gradient-based meta-learning. In International Conference on Machine Learning,
pages 424–433. PMLR, 2019.

[BLLT20] Peter L Bartlett, Philip M Long, Gábor Lugosi, and Alexander Tsigler. Benign
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